
50 The Delphi Magazine Issue 28

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

TPageControl.OnChanging

QIs there any way of obtaining
the new page in a TPageCon-

trol’s OnChanging event? I was us-
ing a TTabbedNotebook before which
gave me the current and new tabs
before changing pages. Using this
information I could decide if the
user was allowed to go to this new
page. Delphi 3's TPageControl does
not appear to reveal where a user
is going as the tabs on a
PageControl are pressed.

AThat’s right. The OnChanging
event is triggered in re-

sponse to a TCN_SELCHANGING notifi-
cation message which doesn’t
reveal the about-to-be-selected
page. I can’t figure a way of getting
around this. I can only assume you
have to treat that event as one
which stops people leaving the cur-
rent page, rather than preventing
people going to a new page.

Removing Components

QWhat’s the proper way to re-
move third party compo-

nents from Delphi 3? There doesn’t
seem to be a “remove compo-
nents” option and the Help just
doesn’t! I got in all kinds of a mess
trying to do this, with Delphi
GPFing so badly it hung my system
several times. I also noticed that
some components had become
marked as “hidden” on the compo-
nent palette, what is this for?

AThere seem to be two ways
of removing components to

one extreme or another.
First, you can remove the

registration unit from the design-
time package concerned. From
Component | Install Packages...
locate the package in the list and

press the Edit button (say Yes
when it offers to open the package
into the Package Editor). Then
locate the relevant component
source unit(s) in the Package
Editor and remove it/them with the
Remove button. Now press the
Package Editor’s Compile button.
The component(s) should now be
gone.

Or, you can hide the component.
From Component | Configure Pal-
ette... locate the relevant page of
the palette where the component
resides. Select the component
from the list of components on that
page. Press the Delete key on the
keyboard or the Hide button. The
component is now hidden.

Your question asks why you
would want to hide a registered
component. You might want to do
this in order to trim down your
component palette’s component
selection, but don’t really want to
remove them completely. This
makes it easy to get these compo-
nents back again. Simply go back to
the component palette configura-
tion dialog, select All from the
Pages list, locate and select the
hidden components and press the
Show button. Consider the old TRe-
port component: it’s actually
installed in Delphi 3, but hidden.

Incidentally if you want to
remove a whole package full of
components, in the Install Pack-
ages dialog, you select the package
and press Remove.

Version Information Problem

QI have used the Delphi 3
project option to include

version information in my project. I
also turned on the option to
auto-increment the build number,
but it doesn’t seem to work. When-
ever I modify my project and

recompile it, the FileVersion re-
mains the same. What is the
problem?

AThe key word in the option
you turned on is build. The

option causes the FileVersion to
increment the Build portion of the
FileVersion whenever you choose
Project | Build All. This explains
why the auto-increment option is
disabled in the options available
for a package: you can only com-
pile a package, the Build Alloption
is not available.

MessageDlg Caption

QIs there a way of changing
the caption of a MessageDlg

over and above the few default
strings available?

AThis goes back to the Mes-
sageDlg question from Issue

23. You can use the lesser known
Dialogs unit routine CreateMes-
sageDialog. You can wrap this up in
a routine of your own. Listing 1
shows an appropriate call to it: no-
tice that the key routine takes
much the same parameters as Mes-
sageDlg. Figure 1 shows the dialog
in action.

SQL Server Blob Size

QWe are using Delphi 3 and
MS-SQL 6.5. When storing

Blobs larger than 32Kb the Borland
Database Engine (BDE) returns the
error message “Invalid blob
length.” A number of people on the
Internet appear to be having the
same problem, but we haven’t seen
a solution yet.

ATo retrieve more than 32kb
from a MS SQL Server table

Blob, you have three possibilities.

52 The Delphi Magazine Issue 28

First, use a TTable. Second, use a
live TQuery. Lastly, set the BDE’s
BLOB SIZE setting to more than
32Kb.

For the first two choices, the
table must be uniquely indexed
and you must ensure that you refer
to a fully qualified table name (eg
dbo.authors) to guarantee that the
BDE will find the unique index for
the table you are selecting from. If
you are the owner of the table (and
therefore may want to use a
non-qualified table name) the BDE
will only find the unique index if
your login name is the same as
your database user name.

The reason for the use of the
unique index is because only the
first 32Kb comes back with the
record. The BDE then needs to

fetch the rest of the Blob in 32Kb
chunks but it needs to uniquely
identify the record to do this.

The only way to ensure a TQuery
makes use of a unique index is to
set RequestLive to True (the same
applies to Oracle). If you must use a
non-live query, you will find in the
BDE Configuration application or
BDE Administrator a setting for all
SQL Aliases: BLOB SIZE. This
defaults to 32Kb but can be set
higher if larger Blobs are required.

Bear in mind that for non-live
queries Blobs are buffered in the
client’s memory, so setting this
higher will increase the memory
overhead on the client. You may
also need to use the BDE’s BLOBS TO
CACHE setting in order to ensure
success.

Apparently these steps are
unnecessary for InterBase, since it
stores Blobs independently of the
records that they are attached to.
Each Blob has its own unique iden-
tifier so the BDE does not have to
make use of a unique identifier of
the record itself to retrieve them.

Changing Table Language

QHow do I programmatically
(at run-time) change the

language driver of a Paradox table?

AYou need to restructure the
table to change the table lan-

guage, therefore I would not rec-
ommend doing this “on the fly.”
However if the table is not being
used, you can call dbiDoRestruc-
ture (a particularly cumbersome
routine) to do the job. dbiDoR-
estructure is an IDAPI call defined
in Delphi 1’s DBIProcs unit or the
32-bit BDE unit. Information on
how to use this API can be found in
last issue’s Tips & Tricks column.

Are You Running?

QHow can I check if an execu-
table is running from a 32-bit

Delphi application? I know how to
check if forms are running by using
the class or the caption, but I can’t
find out how to simply check if an
EXE is running. I don’t care how
many times the exe is running. I
have tried to record the program
handles as I create the EXE, using
CreateProcess, then check to see if
these programs still exist using
GetWindow but it doesn’t work.

AYou need to understand that
Windows maintains many

lists of many things. The way it re-
fers to most of these is via handles.
However, there are many types of
handles. Windows, forms and dia-
logs are identified by window han-
dles, executables are represented
by process handles, icons are re-
ferred to via icon handles, etc.

CreateProcess can give you a
process handle thanks to the
HProcess field of the TProcessInfor-
mation record variable you pass to
it. However GetWindow and FindWin-
dow take window handles. These

➤ Figure 1

uses Dialogs;
...
with CreateMessageDialog('This text goes in the box', mtInformation, [mbOk]) do
try
Caption := 'My new dialog caption';
ShowModal;

finally
Free

end;

➤ Listing 1

var
PI: TProcessInformation;

procedure TForm1.Button1Click(Sender: TObject);
var SI: TStartupInfo;
begin
GetStartupInfo(SI);
Win32Check(CreateProcess(nil, PChar(Edit1.Text),
nil, nil, False, 0, nil, nil, SI, PI));

WaitForInputIdle(PI.hProcess, Infinite);
Button2.Enabled := True

end;
procedure TForm1.Button2Click(Sender: TObject);
const
Msgs: array[Boolean] of String = ('Stopped', 'Still running');

var
Flag: Boolean;

begin
Flag := WaitForSingleObject(PI.hProcess, 1) = Wait_TimeOut;
ShowMessage(Msgs[Flag])

end;

➤ Listing 2

December 1997 The Delphi Magazine 53

are completely different entities.
To get success, pass the process
handle to WaitForSingleObject and
check the return value. If it returns
Wait_TimeOut then the launched
executable is still running. If, on
the other hand, it returns
Wait_Object_0 then the program
has terminated.

Listing 2 (a snippet from the
AppLnch application on this
month’s disk) shows the idea. Note
that Win32Check is a Windows API
test routine that generates an
exception with a nice message if
the API fails. It is new in Delphi 3.

Opening Projects

QHow does Delphi determine
what files to open when

opening a project? Sometimes it
seems to open the main form,
sometimes it opens lots of forms
and sometimes lately, rather an-
noyingly, it only opens the project
source file.

AGenerally speaking this is
dictated by the state of the

desktop saving option. This can be
found on the Preferences page of
Delphi 1’s Options | Environ-
ment... dialog, Delphi 2’s Tools |
Options... dialog and Delphi 3’s
Tools | Environment Options...dia-
log. At the top right there is an op-
tion for auto-saving the desktop. If
this is on, whenever a project is

closed, Delphi generates an INI file
with the projects name, but with a
DSK extension. This file contains
information about what files were
open, and how various IDE win-
dows looked when the project was
closed. This allows the project to
be brought back up looking much
the same as it did when it was
closed, with all the same files and
forms opened.

Incidentally, if you are using
Delphi 1 you will probably want to
ensure the radio buttons to the left
of the auto-save desktop option are
set to save a Desktop file only (as
opposed to Desktop and Symbols,
the Delphi 1 default) to conserve
disk space. See the Delphi Clinic in
Issue 6 for more information on
symbol files.

So if a desktop file is located
when a project is opened, it is used.
If no desktop file is found the gen-
eral practice of the IDE is to open
the main form and its correspond-
ing form unit. Delphi 3.01 (and pos-
sibly 3.00 as well, but I don’t have it
installed to check) can make a
slight variation on this theme
which will show up if you have old
Delphi 1 projects to work on.

First, some background informa-
tion. Delphi 2 and 3 add one
additional statement to a new
project source file when compared
with Delphi 1. The form creation
statements are preceded by a call
to Application.Initialize.

➤ Figure 2

54 The Delphi Magazine Issue 28

procedure TForm1.btnInitTextClick(Sender: TObject);
begin
edtTarget.Text := 'The quick brown fox jumps over the lazy dog';
edtTarget.SelStart := 4;
edtTarget.SelLength := 5

end;
procedure TForm1.btnReplaceSelClick(Sender: TObject);
begin
edtTarget.SelText := edtSource.Text

end;
procedure TForm1.btnReplaceAllClick(Sender: TObject);
begin
edtTarget.Text := edtSource.Text

end;

➤ Listing 3

TEditUndo = class(TEdit)
{ These private fields will be initialised to False, an empty }
{ string and zero respectively, without any intervention }
private
{ To avoid unwanted calls to our additional code }
FInternalOverwrite: Boolean;
{ Saved version of old Text property }
FText: String;
{ Saved version of old SelStart property }
FSelStart,
{ Saved version of old SelLength property }
FSelLength,
{ Length of replacement text }
FReplaceLength: Integer;
procedure SaveContents(NewText: PChar);
procedure RestoreContents;

protected
{ Called if Text property written to }
procedure WMSetText(var Msg: TMessage); message wm_SetText;
{ Called if SelText property written to }
procedure EMReplaceSel(var Msg: TMessage); message em_ReplaceSel;
{ Called when Ctrl-Z pressed }
procedure EMUndo(var Msg: TMessage); message em_Undo;

end;

➤ Listing 4

Assuming you don’t take advan-
tage of this routine (see the Startup
And Shutdown Points article in
Issue 23 for details of how you
could do this) it is only ever made
use of by a Delphi program if you
are writing an Automation or COM

server, and so isn’t generally
required.

If you load up a project without a
call to Application.Initialize and
without an associated desktop file
into Delphi 3.01 it will not bother
loading the main form at all. It will

leave you looking at the less-than-
interesting project file, forcing you
to use the project manager or the
Ctrl-F12 or Shift-F12 keystroke
combinations to get to any of your
forms.

One possible way of alleviating
this problem is to add:

{$ifdef Win32}
Application.Initialize;
{$endif}

into Delphi 1 project files just
before the form creation state-
ments. An easier way would be to
turn on auto-desktop saving.

Undoing In Edits

QI am aware that Alt-
Backspace or Ctrl-Z per-

forms an undo operation on an edit
control, but it seems to be re-
stricted to undoing user interface
modifications. For example, you
can highlight text, press the Delete
key and Ctrl-Z will undo it. How-
ever if you programmatically mod-
ify the Text or SelText property of
an Edit, these normal undo keys do
nothing. Can this be fixed?

AYou are right in stating that
programmatic edit changes

are not undoable. You can verify
this explicitly by asking the edit
control at any time if it is able to
offer an undo facility via its em_Ca-
nUndo message. Something like:

LongBool(Edit1.Perform(
em_CanUndo, 0, 0))

will evaluate to either True or
False.

To rectify the situation, we can
make a new component inherited
from TEdit and manually set up our
own “undo buffer.” When you write
to the Text property, a wm_SetText
message is sent to the underlying
edit control. With SelText an
em_ReplaceSel message is sent. We
can write new message handlers
for both these messages and save
the old value before allowing the
replacement to occur.

When the undo operation is
requested, em_Undo is sent to the
edit. We can also write a handler

procedure TEditUndo.SaveContents(NewText: PChar);
begin
FText := Text;
FSelStart := SelStart;
FSelLength := SelLength;
{ Need to keep record of length of replacement }
{ text to ensure highlighting works when you }
{ repeatedly press the Undo key combination }
FReplaceLength := StrLen(NewText)

end;
procedure TEditUndo.RestoreContents;
var
TmpText: String;

begin
{ Need to ensure we can undo the undo }
{ i.e. perform a redo operation }
{ Swap saved text with current text }
TmpText := Text;
{ Writing to Text will generate a wm_SetText message }
{ which we don't want to trap ourselves this time }
FInternalOverwrite := True;
Text := FText;
FText := TmpText;
FInternalOverwrite := False;
{ Restore old highlight}
SelStart := FSelStart;
SelLength := FSelLength;
{ Update other fields accordingly }
FSelLength := FReplaceLength;
FReplaceLength := SelLength;

end;

➤ Listing 5

December 1997 The Delphi Magazine 55

for that and do our own undoing (if
possible) if the control is unable
(or unwilling) to help.

The new component is in the file
EditUndo.Pas and is shown in
action in the EditTest.Dpr project
(see Figure 2). The top edit control
is a TEditUndo component, whose
native Windows undo ability is
constantly reported in the check-
box via a timer.

The first button sets up some
text and highlights a portion of it as
shown. The second button over-
writes the highlighted text and the
third button replaces the whole
contents (see Listing 3). Finally,
the Edit | Undo menu item simply
sends an em_Undo message to the
active control:

ActiveControl.Perform(
em_Undo, 0, 0)

Admittedly this is not a good
catch-all way to implement an

undo menu option for edit-like
devices. It doesn’t cater for String-
Grids or DBGrids, for example. A
better lump of code was discussed
in the Delphi Clinic back in Issue 5
[That’s a handy advert for our back
issues CD-ROMs, thanks Brian! See
Page 63. Editor].

The TEditUndo class has a few
extra private fields and methods in
addition to the message handlers
already mentioned. See Listing 4.

The em_ReplaceSel and wm_Set-
Text message handlers both use
the SaveContents method to save
the current value of the Text prop-
erty along with SelStart and Sel-
Length and also the length of the
new piece of text (which is passed
across to SaveContents). The
em_Undo handler calls RestoreCon-
tents to set things back how they
were, assuming the edit itself
cannot do it.

Listing 5 shows these two helper
routines. You might notice that

RestoreContents performs its res-
toration by writing to the Text
property, which will cause a
wm_SetText message to be sent
back to the control, which would
call SaveContents even though we
wouldn’t want to do any saving at
this point. To avoid unwanted
saving, a Boolean data field is made
use of. The wm_SetText message
handler only calls SaveContents if
FInternalOverwrite is False.

The em_Undo message handler
only calls RestoreContents if the
edit refuses to perform its own
undo operation and FText has
something in it, otherwise the
default edit functionality is
invoked.

Acknowledgements
Thanks to Steve Axtell for the data-
base information used in this
month’s column.

Stuck? Email your problem to
Brian Long at clinic@blong.com

	TPageControl.OnChanging
	Removing Components
	Version Information Problem
	MessageDlg Caption
	SQL Server Blob Size
	Changing Table Language
	Are You Running?
	Opening Projects
	Undoing In Edits
	Acknowledgements

